《共識》發(fā)布至今已過去5年時間,期間,各種臨床常用心血管無創(chuàng)影像技術(shù)又有了較大的新進(jìn)展,包括但不限于新技術(shù)的發(fā)明,臨床轉(zhuǎn)化以及臨床普及程度提升??傮w而言,這些進(jìn)展可以概況為以下幾個共性方面:首先,是對自身短板的補強(qiáng),比如CT低劑量技術(shù),CMR成像速度提升,三維超聲技術(shù)進(jìn)展,以及PET和SPECT的低劑量、快速顯像等;其次,是對自身應(yīng)用領(lǐng)域的拓展,比如CT Perfusion和CT FFR進(jìn)入到功能領(lǐng)域,超聲造影技術(shù)對圖像質(zhì)量的提升和血流定量功能的實現(xiàn),CMR面向三維心臟的首次通過血流定量,PET和SPECT在心肌功能分子影像——如心肌神經(jīng)、心肌血管生成、心肌纖維化——等方面的進(jìn)展等;第三,是對精確定量的追求,包括血流灌注絕對定量以及運動應(yīng)變量化成像等;最后,是積極擁抱AI與大數(shù)據(jù)技術(shù),在成像性能、圖像分析和診斷預(yù)后方面的提升。對于穩(wěn)定性冠心病,如《共識》所述,應(yīng)基于驗前概率和病人具體情況,開展有創(chuàng)或無創(chuàng)影像檢查,觀察心肌缺血變化為主要目的。近年來,隨著冠心病精準(zhǔn)診療水平的提升,作者認(rèn)為,在《共識》基礎(chǔ)上,臨床對無創(chuàng)影像檢查技術(shù)提出了更高的要求,包括:精確量化心肌缺血的程度,明確鑒別導(dǎo)致缺血的原因,準(zhǔn)確量化評估因缺血造成心肌損害的范圍和性質(zhì),有效提示預(yù)后風(fēng)險。圖23:心肌缺血疾病典型發(fā)展過程中各種影像技術(shù)的應(yīng)用參考圖3所述心肌缺血疾病典型發(fā)展過程中各個階段的特征,以及上文對各種新技術(shù)進(jìn)展的討論,作者認(rèn)為,最直接、精確量化心肌缺血程度的技術(shù)是負(fù)荷+靜息心肌血流絕對定量灌注顯像,與其它缺血評估技術(shù)和傳統(tǒng)的灌注顯像相比,靈敏度更高,量化水平更高,對臨床更具備指導(dǎo)意義。心肌代謝與運動的影像檢查可以作為針對特定患者群體進(jìn)行心肌缺血評估的補充技術(shù)。在明確并量化缺血后,需要對缺血的原因進(jìn)行鑒別,比如是冠脈粥樣硬化、微循環(huán)病變,亦或是心臟瓣膜或心肌相關(guān)疾病,還是血液疾病等,這里的鑒別同樣需要功能性、量化的影像檢查,特別是在血管解剖形態(tài)特征不典型、不明確的條件下。明確或排除缺血原因之后,進(jìn)一步行臨床治療之前,還應(yīng)該對心肌生理或功能損害程度與性質(zhì)進(jìn)行針對性的檢查,比如心肌存活,心肌代謝,心肌纖維化、冬眠心肌等等,因為這將直接影響相關(guān)治療方案的優(yōu)化選擇以及患者的預(yù)后。當(dāng)然,無創(chuàng)檢查結(jié)果具體如何被采信并輔助心血管疾病的診療,還需要依賴醫(yī)生結(jié)合其他相關(guān)信息進(jìn)行綜合的權(quán)衡和把握。冠心病或心肌缺血疾病的無創(chuàng)檢查技術(shù),不僅可以用于患者的臨床診斷和輔助治療,也可以應(yīng)用于高危人群的篩查,特別是隱匿性冠心病的篩查,這對于冠心病的早診早治和治愈率改善,具有非常重要的意義。以上為作者的一家之言,拋磚引玉,意在引發(fā)大家關(guān)注討論,歡迎批評指正。參考文獻(xiàn)[1] 中華醫(yī)學(xué)會心血管病學(xué)分會, 心血管病影像學(xué)組, 穩(wěn)定性冠心病無創(chuàng)影像檢查路徑的專家共識寫作組. 中國介入心臟病學(xué)雜志. 2017,25(10):541-549[2] 方理剛,朱文玲,“超聲心動圖技術(shù)評價心功能進(jìn)展”,北京協(xié)和醫(yī)院,學(xué)術(shù)交流報告[3] 王之龍,“超聲心動圖新技術(shù)、新進(jìn)展”,中山大學(xué)附屬第八醫(yī)院,學(xué)術(shù)交流報告[4] Heseltine TD, Murray SW, Ruzsics B, Fisher M. Latest Advances in Cardiac CT. Eur Cardiol. 2020 Feb 26;15:1-7.[5] Dell'Aversana S, Ascione R, De Giorgi M, De Lucia DR, Cuocolo R, Boccalatte M, Sibilio G, Napolitano G, Muscogiuri G, Sironi S, Di Costanzo G, Cavaglià E, Imbriaco M, Ponsiglione A. Dual-Energy CT of the Heart: A Review. J Imaging. 2022 Sep 1;8(9):236.[6] Dewey M, Siebes M, Kachelrie? M, Kofoed KF, Maurovich-Horvat P, Nikolaou K, Bai W, Kofler A, Manka R, Kozerke S, Chiribiri A, Schaeffter T, Michallek F, Bengel F, Nekolla S, Knaapen P, Lubberink M, Senior R, Tang MX, Piek JJ, van de Hoef T, Martens J, Schreiber L; Quantitative Cardiac Imaging Study Group. Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia. Nat Rev Cardiol. 2020 Jul;17(7):427-450.[7] Nagueh SF, Qui?ones MA. Important advances in technology: echocardiography. Methodist Debakey Cardiovasc J. 2014 Jul-Sep;10(3):146-51.[8] Akkus, Z., Aly, Y. H., Attia, I. Z., Lopez-Jimenez, F., Arruda-Olson, A. M., Pellikka, P. A., Pislaru, S. V., Kane, G. C., Friedman, P. A., & Oh, J. K. (2021). Artificial intelligence (ai)-empowered echocardiography interpretation: A state-of-the-art review. Journal of Clinical Medicine, 10(7)[9]https://consultqd.clevelandclinic.org/cardiac-mri-7-new-and-emerging-developments-to-be-aware-of/#menu[10] 宋宇,郭應(yīng)坤,許華燕,等.磁共振定量成像技術(shù)評估心肌組織的研究進(jìn)展[J].磁共振成像,2021,12(11):109-112,121
[11] Salerno M, Sharif B, Arheden H, Kumar A, Axel L, Li D, Neubauer S. Recent Advances in Cardiovascular Magnetic Resonance: Techniques and Applications. Circ Cardiovasc Imaging. 2017 Jun[12] Sogbein OO, Pelletier-Galarneau M, Schindler TH, Wei L, Wells RG, Ruddy TD. New SPECT and PET radiopharmaceuticals for imaging cardiovascular disease. Biomed Res Int. 2014;2014:942960[13] Klein R, Celiker-Guler E, Rotstein BH, deKemp RA. PET and SPECT Tracers for Myocardial Perfusion Imaging. Semin Nucl Med. 2020 May;50(3):208-218.[14] Matheoud, R., Lecchi, M. Time-of-flight in cardiac PET/TC: What do we know and what we should know?. J. Nucl. Cardiol. 25, 1550–1553 (2018).[15] H. Sun, L. Peng, H. Zhang, Y. He, S. Cao and L. Lu, "Dynamic PET Image Denoising Using Deep Image Prior Combined With Regularization by Denoising," in IEEE Access, vol. 9, pp. 52378-52392, 2021[16] Wang G, Qi J. Direct estimation of kinetic parametric images for dynamic PET. Theranostics. 2013 Nov 20;3(10):802-15.[17] CHC2022:心肌纖維化分子顯像大有可為, https://circ.cmt.com.cn/detail/1457078.html[18] Hsu B, Chen FC, Wu TC, Huang WS, Hou PN, Chen CC, Hung GU. Quantitation of myocardial blood flow and myocardial flow reserve with 99mTc-sestamibi dynamic SPECT/CT to enhance detection of coronary artery disease. Eur J Nucl Med Mol Imaging. 2014 Dec;41(12):2294-306.[19]?Wang L, Zheng Y, Zhang J, Wang M, Wu D, Wang Y, Qiu H, Hsu B, Fang W. Diagnostic value of quantitative myocardial blood flow assessment by NaI(Tl) SPECT in detecting significant stenosis: a prospective, multi-center study. J Nucl Cardiol. 2022 Aug 15. doi: 10.1007/s12350-022-03085-3. Epub ahead of print.[20] Westcott RJ, Tcheng JE. Artificial Intelligence and Machine Learning in Cardiology. JACC Cardiovasc Interv. 2019 ; 22;12(14):1312-1314.[21] Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial Intelligence in Cardiology. J Am Coll Cardiol. 2018 ;12;71(23):2668-2679.