草莓视频app下载|51草莓视频下载app|草莓视频在线观看无限看

logo

距離創(chuàng)新創(chuàng)業(yè)大賽報名結(jié)束
48
16
37

會員登錄

用戶登錄 評委登錄
一周內(nèi)自動登錄 建議在公共電腦上取消此選項
一周內(nèi)自動登錄 建議在公共電腦上取消此選項
依據(jù)工信部新規(guī)要求,運營商部署做出調(diào)整,現(xiàn)部分用戶無法獲取短信驗證碼(移動運營商為主)。如遇收不到短信驗證碼情況,請更換其他手機號(聯(lián)通、電信)嘗試
一周內(nèi)自動登錄 建議在公共電腦上取消此選項
手機驗證碼登錄 還未賬號?立即注冊

會員注冊

*依據(jù)工信部新規(guī)要求,運營商部署做出調(diào)整,現(xiàn)部分用戶無法獲取短信驗證碼(移動運營商為主)。如遇收不到短信驗證碼情況,請更換其他手機號(聯(lián)通、電信)嘗試
已有賬號?
醫(yī)械創(chuàng)新資訊
醫(yī)械創(chuàng)新資訊

新型冠狀病毒來源何處?又為何會導(dǎo)致肺炎高發(fā)?

日期:2020-02-05
瀏覽量:2265

據(jù)2019年10月下旬的一則報道,在中國武漢出現(xiàn)不明病毒導(dǎo)致的肺炎患者,隨后確定了一種新型冠狀病毒為致病病原體并臨時命名為2019新冠狀病毒(2019-nCoV)。截至到2020年2月3日16點40分,全國確診病例已經(jīng)達到17267例,成為了一場真正席卷全國的傳染病。


2019-nCoV是一種新型的冠狀病毒,并且是很容易發(fā)生變異的RNA單鏈病毒。冠狀病毒已在數(shù)種禽類及哺乳動物中被發(fā)現(xiàn),包括駱駝、蝙蝠、果子貍、老鼠、狗和貓等。而新型的哺乳動物冠狀病毒也被陸續(xù)鑒定出。例如,2018年蝙蝠起源的HKU2相關(guān)冠狀病毒導(dǎo)致了豬的致命性急性腹瀉綜合征。


那么這次如此大范圍傳播的新型冠狀病毒到底有哪些特征呢?對此,一項最新的研究就9例確診患者肺泡細胞中提取出的2019-nCoV,通過基因組學的分析尋找到病毒的起源以及如何與人體內(nèi)細胞結(jié)合的途徑。


從這9例患者的樣本分析得到了8個完整的兩個部分的2019-nCoV基因組序列,這些數(shù)據(jù)已保存在中國國家微生物數(shù)據(jù)中心(登錄號NMDC10013002和基因組登錄號NMDC6001300

2-01至NMDC60013002-10),而BGI的數(shù)據(jù)已保存在中國國家基因庫(登錄號CNA0007332–35)。


基于這些基因組分析,在所有樣品中鑒定出的一些重疊群均與蝙蝠SARS乙型冠狀病毒bat-SL- CoVZC45密切相關(guān),8個完整的基因組在整個基因組中幾乎是相同的,這表明2019-nCoV有極大的可能是來源于蝙蝠。


并且從結(jié)果來看,人身上的新型冠狀病毒和這組基因數(shù)據(jù)很相似,表明2019-nCoV很可能是最近才發(fā)生了變異從而可以在人身上進行傳播,這進一步落實了之間的推測。


對2019-nCoV和蝙蝠中的基因組進行測序?qū)Ρ龋▓D片來源:參考文獻1)


對2019-nCoV完整基因組進行的Blastn搜索顯示,GenBank上最緊密相關(guān)的病毒是bat-SL-CoVZC45(序列同一性87.99%;查詢覆蓋率99%)和另一種蝙蝠起源的SARS樣乙型冠狀病毒, bat-SL-CoVZXC21(登錄號MG772934;序列同一性87.23%;查詢覆蓋率98%)。在五個基因區(qū)域(E,M,7,N和14)中,序列同一性大于90%,在E基因中最高(98·7%)。2019-nCoV的S基因與bat-SL-CoVZC45和bat-SL-CoVZXC21表現(xiàn)出最低的序列同一性,僅占75%左右。此外,1b中的序列同一性(約86%)低于1a中的序列同一性(約90%)。大多數(shù)編碼蛋白在2019-nCoV和相關(guān)的蝙蝠衍生冠狀病毒之間顯示出高度的序列同一性。


冠狀病毒需要感染人體,那么就需要和人體的細胞相結(jié)合——結(jié)合細胞上的受體。包膜棘突蛋白(S)介導(dǎo)受體結(jié)合和膜融合,對于確定宿主的選向性和傳遞能力至關(guān)重要。


進一步的分析表明,與其它乙型冠狀病毒一樣,受體結(jié)合域由核心和外部亞域組成。值得注意的是,2019-nCoV受體結(jié)合結(jié)構(gòu)域的外部子結(jié)構(gòu)域與SARS-CoV的結(jié)構(gòu)域更相似。該結(jié)果表明,2019-nCoV也可能使用血管緊張素轉(zhuǎn)化酶2(ACE2)作為細胞受體。而ACE2 廣泛存在于人的肺毛細血管內(nèi)皮細胞上,這也是為什么此次新冠病毒會造成嚴重的肺炎的原因。


目前基本上可以確定2019-nCoV是來自于蝙蝠,而可以結(jié)合的細胞種類也和我們之前猜想的類似。但是作為一種典型的單鏈RNA病毒,其可怕的變異性才最值得我們警惕——幾乎每個周期都可能會發(fā)生變異,這就意味著隨著傳播人數(shù)的增多,其變異性可能會大大增加。


不論是傳染性的升高和致死率的提高,都不是我們希望看到的結(jié)果。而我們需要更加審慎的一點是:在野生動物上隱藏的病毒庫,可能在不經(jīng)意間傳播到人類這個群體中來,病毒的變異性很可能會給人類群體引發(fā)嚴重的后果。


參考文獻:

1 Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24: 490–502.

2 Cavanagh D. Coronavirus avian infectious bronchitis virus. Vet Res 2007; 38: 281–97.

3 Ismail MM, Tang AY, Saif YM. Pathogenicity of turkey coronavirus in turkeys and chickens. Avian Dis 2003; 47: 515–22.

4 Zhou P, Fan H, Lan T, et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 2018; 556: 255–58.

5 Peiris JS, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med 2004; 10 (suppl 12): S88–97.

6 Chan-Yeung M, Xu RH. SARS: epidemiology. Respirology 2003; 8 (suppl): S9–14.

7 Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012; 367: 1814–20. 8 Lee J, Chowell G, Jung E. A dynamic compartmental model for the Middle East respiratory syndrome outbreak in the Republic of Korea: a retrospective analysis on control interventions and superspreading events. J Theor Biol 2016; 408: 118–26.

9 Lee JY, Kim YJ, Chung EH, et al. The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, 2015. BMC Infect Dis 2017; 17: 498.

10 Tan W, Zhao X, Ma X, et al. A novel coronavirus genome identified in a cluster of pneumonia cases—Wuhan, China 2019?2020. China CDC Weekly 2020; 2: 61–62.

11 Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; published online Jan 24. DOI:10.1056/NEJMoa2001017.

12 Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020; published online Jan 24. https://doi.org/10.1016/S0140-6736(20)30154-9.

13 Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; published online Jan 24. https://doi.org/10.1016/S0140-6736(20)30183-5.

14 Niu P, Shen J, Zhu N, Lu R, Tan W. Two-tube multiplex real-time reverse transcription PCR to detect six human coronaviruses. Virol Sin 2016; 31: 85–88.

15 Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754–60.

16 Zhao Y, Tang H, Ye Y. RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data. Bioinformatics 2012; 28: 125–26.

17 Nurk S, Bankevich A, Antipov D, et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In: Deng M, Jiang R, Sun F, Zhang X, eds. Research in computational molecular biology (RECOMB 2013): lecture notes in computer science, vol 7821. Berlin: Springer, 2013: 158–70.

18 Pan M, Gao R, Lv Q, et al. Human infection with a novel, highly pathogenic avian influenza A (H5N6) virus: virological and clinical findings. J Infect 2016; 72: 52–59.

19 Marchler-Bauer A, Bo Y, Han L, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 2017; 45: D200–03.

20 Lole KS, Bollinger RC, Paranjape RS, et al. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 1999; 73: 152–60.

21 Nakamura T, Yamada KD, Tomii K, Katoh K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 2018; 34: 2490–92.

22 Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312–13.

23 Hu D, Zhu C, Ai L, et al. Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerg Microbes Infect 2018; 7: 154.

24 Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3: 237–61.

25 Lu G, Wang Q, Gao GF. Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol 2015; 23: 468–78.

26 Wang Q, Wong G, Lu G, Yan J, Gao GF. MERS-CoV spike protein: targets for vaccines and therapeutics. Antiviral Res 2016; 133: 165–77.

27 He Y, Zhou Y, Liu S, et al. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun 2004; 324: 773–81.

28 Li F. Evidence for a common evolutionary origin of coronavirus spike protein receptor-binding subunits. J Virol 2012; 86: 2856–58.

29 Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 2005; 309: 1864–68.

30 Lu G, Hu Y, Wang Q, et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 2013; 500: 227–31.

31 Wang N, Shi X, Jiang L, et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res 2013; 23: 986–93.

32 Wang Q, Qi J, Yuan Y, et al. Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26. Cell Host Microbe 2014; 16: 328–37.

33 Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 2018; 46: W296–303.

34 Prabakaran P, Gan J, Feng Y, et al. Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. J Biol Chem 2006; 281: 15829–36.

35 Guan Y, Zheng BJ, He YQ, et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 2003; 302: 276–78.

36 Alagaili AN, Briese T, Mishra N, et al. Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. mBio 2014; 5: e00884-14.

37 Zhou P, Yang X-L, Wang X-G, et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv 2020; published online Jan 23. DOI:10.1101/2020.01.22.914952

返回列表